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1. Psychological rationale for homogeneity and
interdependence

2. Statistical framework that incorporates homogeneity and
interdependence

3. Give a few examples and develop intuition

Beginning, middle and end, but not necessarily in that order
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error
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Influence is operationalized by regression paths



Why Homogeneity and
Interdependence?

How is an individual similar to or different from their spouse
in thought, behavior or affect (e.g., shared norms)?

How do couple members influence each other?

We shouldn’t analyze data from dyads/groups as individuals
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Interdependence

e We have good intuition and models for dealing with
temporal dependence (time series, repeated measures,
growth curves) and multivariate structure (factor and

SEM models)

e We have weaker intuition about interdependence due to
social interaction or pairing

e We have good statistical models for each (e.g., HLM,
SEM, latent growth curves), but lack a complete
understanding of how these frameworks interrelate
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Desiderata for a General Framework

Provide a conceptual framework for representing structure in
data due to time, grouping, and multiple variables.

Easily handle covariates and common procedures such as
mediation and moderation.

Flexible estimation and testing procedures (GLS, ML, REML,
MCMC, bootstrap); deal with missing data and sample
weights; deal with different distributions (e.g., generalized
linear models); additional generalizations (e.g., generalized
additive models)

Easy to use with standard designs but flexible to deal with
nonstandard design elements
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Nonindependence

Correlations due to

e temporal clustering
e variable clustering
e interpersonal clustering
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Independence as the Null Hypothesis

Example with discrete behavior (group size = n):

1.

2.

3.

Assume the behavior can be represented as independent,
identically distributed Bernouli trials (i.e., coin flips).

Estimate the probability p that the behavior occurs when
individuals are alone.
Calculate the null hypothesis of independence for groups
of size n as

1—(1-p)"
This is the estimated probability that at least one
member of the group will exhibit the behavior).
Compare the observed proportion of the behavior in
groups of size n to the null value computed in the
previous step.



Independence as the Null Hypothesis

Example with discrete behavior (group size = n):

1.

2.

3.

Assume the behavior can be represented as independent,
identically distributed Bernouli trials (i.e., coin flips).
Estimate the probability p that the behavior occurs when
individuals are alone.

Calculate the null hypothesis of independence for groups
of size n as
1—(1=p)"

This is the estimated probability that at least one
member of the group will exhibit the behavior).

Compare the observed proportion of the behavior in
groups of size n to the null value computed in the
previous step.

Limitation: interdependence is not a direct parameter!



Intraclass Correlation

The intraclass correlation will have the leading role in this
play. We’ll denote it as

T
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Intraclass Correlation

ANOVA /HLM Language: Two level model approach

Yij = Bi+ey
Bi = p+m

Intraclass correlation is given by

A proportion interpretation.



Intraclass Correlation:
approach

ANOVA/HLM Language: Two level model

Yij
Bi

Bi + €5
[ e

Intraclass correlation is given by
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The Nested Individual



Symbolic representation for the
pairwise setup

The first subscript represents the dyad and the second
subscript represents the individual.

Variable

Dyad # X X
1 X1 Xg2
X2 Xy

2 X1 Xgo
Xoo  Xgp

3 X31 X3
X3 X3

4 X Xy
X2 Xn



Concrete Illustration of the Pairwise
Coding

Dyad # X X/
1 Amos Bram
Bram Amos

2 Carl Dan

Dan Carl
3 Ed Frank
Frank Ed

ETC



20 30

0 5 10

Pairwise Plots

strangers; rxx'= 0.72

0 5 10 20 30

20 30

0 5 10

friends; rxx'= 0.4

0 5 10 20 30




Pairwise Intraclass for the
Exchangeable Case

Simply compute the usual Pearson correlation between
variable X and the “reverse coded” version of X, which we
denote X'.

The significance test (against a null hypothesis of zero) is
simply

Z = Txa \/ﬁ

where 7 is asymptotically normally distributed and n is the
number of dyads.



X prime

not on welfare

X prime

10

welfare




Symbolic representation for the
pairwise setup
The first subscript represents the dyad and the second

subscript represents the individual. Categorization of
individuals as 1 or 2 is based on the class variable C.

Variable

Dyad# C X X
1 1 Xy Xpg

2 X2 Xy

2 Xy Xy

2 X3 X

4 1 X Xy

2 Xy Xy



Pairwise Intraclass for the
Distinguishable Case

Compute the partial correlation between variable X and the
“reverse coded” version of X, partialling out the person code

C.

The partial pairwise intraclass correlation is given by

'xx! — TexTex!
V(1 —rex?)(1 = rex?)

xx'.c =




Intraclass Correlation

The structural model underlying the intraclass correlation for
the exchangeable case is

Yij = ,u—l-ﬂ'i-i-eij

where 7 is a random effect. The parameter 7 represents the
“dyad effect.” This model is equivalent to a one-way

random-effects ANOVA with “dyad” as the factor.
The structural model for the distinguishable case is

Yijk = /L+7Ti—|—04j +Eijk

where 7 is a random effect and « is a fixed effect. The
parameter 7 represents the “dyad effect” and the parameter o
represents the effect on the “distinguishable” variable. This
model is equivalent to a two-way ANOVA with “dyad” as a
random-effects factor. The intraclass correlation in the
distinguishable case will be numerically similar to the Pearson
correlation in most situations.



The standard definition of the intraclass correlation is

~ MSB- MSE
PI.= MSB + (k- 1)MSE

The terms MSB and MSE come from the ANOVA source
table, and k represents the number of people in the “group”
(i.e., in dyads k = 2). The same formula is used whether a
one-way ANOVA (exchangeable case) or a two-way ANOVA
(distinguishable case) is used.

The intraclass correlation compares the variability between
dyads v. the variability within dyads.



But the ANOVA approach is difficult to work work with. ..
1. tedious to generalize to situations with many variables

2. not easy to develop intuition for the relevant mean square
terms and to connect the parameters to meaningful
psychological statements.

3. not easy to develop tests of significance

The ANOVA approach can be generalized through
“hierarchical linear models” (HLM).

The pairwise approach is a special case of HLM when all
groups have the same size (as in dyads), i.e., in the case of
dyads the pairwise approach is identical to HLM. The main
benefit of the pairwise approach is that it is easy to
understand and provides natural connections with
psychological research questions.



The pairwise intraclass is similar to the ANOVA intraclass but
it is based on sums of squares rather than mean squares. For
the special case of dyads we have

 $SB- SSE 0
Pr = SSB ¥ SSE



CODE

SPSS

MIXED dv BY person
/fixed person
/print solution testcov
/repeated = person | SUBJECT(dyad) covtype(CS).



Dyadic Correlation Between Two
Variables

Example: Each member of a couple completes both a trust
scale (e.g., how much do you trust your partner) and a
satisfaction scale (e.g., how satisfied are you with your
marriage).

What is the relationship between trust and satisfaction?



How would you approach this analysis problem?
1. correlate the trust scores with the satisfaction scores
ignoring group membership

2. correlate mean trust score (within couple) with mean
satisfaction score



How would you approach this analysis problem?

1. correlate the trust scores with the satisfaction scores
ignoring group membership
2. correlate mean trust score (within couple) with mean
satisfaction score
There are problems with these two correlations!

The first confounds dyad-level effects and the second
confounds individual-level effects.

Thus, these two correlations are indeterminate as to the
“psychological” mechanisms they represent.
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Symbolic representation for the
pairwise setup for two variables

Variable
Dyad # C X X Yy Y
1 X X2 Y Yoo
X2 Xi1 Y2 Yqu
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Graphical Representation of the
Correlations



Unique

Tyy’

Td



According to the model, the two observed correlations
decompose as

rxy = VIxx' Tq VTyy T V1—rxx i /1 —ryy

and

ry = VT VIR



According to the model, the two observed correlations
decompose as

rxy = VIxx' Tq VTyy T V1—rxx i /1 —ryy

and

Txy/ = N/ Txx Td A /Tyy/.
With these decompositions, simple algebra solves for r; and
rq-

Txy—’f’xy/
1 \/1—T’XX/\/1—’T‘yyl

and

Txy/

ry = —.
d VI A/TYyY!



Example: Individual and Dyad Level
Relationship

Frequency of verbalization and frequency of gaze.

i Iq
Strangers -.33 .68
Friends 14 .30




CODE
SAS

proc calis cov edf=N-1 se method=mls residual pcorr;

linegs

vi= 1F1 + El,
v2 = 1 F1 + E2,
v3 = 1 F2 + E3,
v4 = 1 F2 + E4;
STD

F1-F2 = vl v2,
E1-E4 = x1 x1 x2 x2;

cov
F1 F2 = rd,
El E3 = ri,
E2 E4 = ri;
run;

Cov matrix as input; state N.



CODE

Mplus

Title: SEM model;
Data: File = G:\FTS\files from Rich\SEM data L3.dat;
variable: names = ID x1 x2 yl1 y2;
USEV = x1 x2 yl y2;
Analysis: type = meanstructure;
model:

x by x1@1 x2@1;

y by ylel y2ei;

x1 x2 (1);

vyl y2 (2);

[x1 x2] (4);

[yl y21 (5);

x1 with y1 (3);

x2 with y2 (3);

x with y;

output: sampstat standardized;



Correlation Between Dyad Means

Ixy + Ixy’
V1+rxx \/1 + Iyy’

I'm =

Note that rmy can be positive under different combinations of
rxy and Xy’ That is, ry reflects a combination of individual
and dyad level processes, and should not be routinely
interpreted as reflecting only dyad level processes.



Latent Variable Model: HLM Lingo

Three-level model: one level for the variable, one level for
individual effect, and one level for group effect.

Yiie = BoXo+ 51Xy
Bo = po+ T+ €
i = m+m+ea



Alternative Model: Interdependence

The degree to which one individual influences another (e.g.,
Lewin).

This influence need to occur face-to-face:

We have a good time together, even when we’re not
together. Yogi Berra



Kelley & Thibaut: Early APIM

Interaction separated into three types of control or influence
1. actor effect (reflexive)
2. partner effect (fate)
3. mutual effect (behavior)



Wife’s

X

rxx!

Husband’s
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Husband’s

Y




APIM is a Pairwise Model

Y = Bo+ /X + BX + 53XX

such that

e predictor X represents the actor’s influence on the actor’s
Y

e predictor X’ represents the partner’s influence on the
actor’s Y,

Y

e the product XX’ represents the mutual influence of both
people on the actor’s Y.



Example: Generalized Pairwise
Model

Regress frequency of smiles/laughter on frequency of
verbalization

Strangers: an effect of the partner’s verbalization frequency on
the actor’s laughter (i.e., in ordinal language, the more the
other talks, the more the actor smiles); no other effects



Example: Generalized Pairwise
Model

Regress frequency of smiles/laughter on frequency of
verbalization

Strangers: an effect of the partner’s verbalization frequency on
the actor’s laughter (i.e., in ordinal language, the more the
other talks, the more the actor smiles); no other effects

Friends: an effect of the actor’s verbalization frequency on the
actor’s laughter (i.e., in ordinal language, the more I talk, the
more [ smile); no other effects



Simple Structural Models for Dyadic
Designs (Modeling Partner Effects)

Basic Actor-Partner Model:
o Kraemer-Jacklin model of sex differences

e Nonstandard regression because of interdependence across
cases

e Subject is unit of analysis and each dyad is
“double-coded”

Generalized Actor-Partner Model: Simple generalization to
continuous predictors

e Stinson and Ickes example



Actor-Partner Model Across Sex: Distinguishable version
e Couples is unit of analysis

e Individual relations within couples modeled by Structural
Equation Modeling

e Test whether distinguishable paths are necessary (sex
differences in processes)

e Murray, Holmes, & Griffin example



Actor-Partner Model with
Heterosexual Married Couples

Wif a Wif F\’/;\\
X \Eri()l /
I\\r o Actor Effect (a & d): .32
e >
h e
N\
N —— Partner Effect (b & c): .30
Husband’ Husband’s | (V)
X 1 Y \}:17/)41/’




Actor-partner model: The ICC again

Y = [o+ 56X+ X
such that

e actor’s X predicts actor’s Y and
e partners X (denoted X') predicts actor’s Y



Actor-partner model: The ICC again

Y = Bo+ 65X+ X

such that
e actor’s X predicts actor’s Y and
e partners X (denoted X') predicts actor’s Y

The actor regression coefficient can be expressed in terms of
pairwise correlations

Syl Tpy — ToT
ﬁl _ y( Ty zg’ :m:’)

895(1 - sz’)

Similarly, the partner regression coefficient is

Sy(Tay — ToyTaar)
s.(1—12%))

xx!

B2




Variance of 3 related to the ICC

The variance of the actor (3 is

20,2 .2 2
So(TayTag — TaaTyy +1 =12,




Longitudinal Models

Get complicated. Different ways of representing change in a
single person, now there are two individuals.



McArdle’s Bivariate Latent
Difference Model
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0, var(el)

I

Conflict
11 years old

0, var(e2)

I

Conflict
13 years old

0, var(e3)

I

Conflict
15 years old

0, var(e4)

I

Conflict
17 years old

Mean = a0, Var(uOi)

Cov (u0i, uli)

Mean = c0, Var(uli)



Shared Variance Intercept/Slope




Which Programs to Use?

Multilevel models provide a unified approach to dyadic and
longitudinal models.

Advantages: Arbitrary nested models with multiple levels of
analysis

Disadvantages: Methods complex to implement and
interpret



Which Programs to Use?

SEM provides a unified approach to dyadic and longitudinal
models.

Advantages: Multiple variables easy to handle

Disadvantages: Difficult to implement unequal size groups;
longitudinal designs can get complicated



For Now...

e Single framework for many different models

e Simple intuition for special case models (e.g., show
correlations imposed by various models)

Allows one to mix and match elements from different
frameworks, including categorical dependent variables

Allows extensions of standard models such as an
individual being a member of multiple groups, an
individual or family belonging to multiple neighborhoods,
an individual belonging to multiple dyads



For Now...

e Single framework for many different models

e Simple intuition for special case models (e.g., show
correlations imposed by various models)

e Allows one to mix and match elements from different
frameworks, including categorical dependent variables

o Allows extensions of standard models such as an
individual being a member of multiple groups, an
individual or family belonging to multiple neighborhoods,
an individual belonging to multiple dyads

But we need a better program that makes it easy to fill in the
correlated error structure



Conclusions

e Dependence due to social interaction does not require a
“statistical cure”

e Interdependence provides an opportunity to measure and
model social interaction (even over time)

e Ask “how can I capture the dependencies that are
logically possible in my data”



Prescriptions

e The idea is not to “cure” non-independence but to study
and conceptualize interdependence.

e Follow your conceptual models in their richness.

e There is still lots of room for careful design in
longitudinal correlational research with dyads. It is not
just a statistical issue.



Interdependence Mantra

Study
Model
Celebrate

Interdependence



