Title: A Warm Light for All

Dimensions: 2m (H) x 0.5m (D) (Estimated) **Materials:** Light, Electronics, Acylic/Wood

Proposal Type: Interactive Installation/Spectacle (Reusable for other events), Sponsors for lighting and

controls appreciated Concept Proposal:

A Warm Light for All is an interactive light monolith that will be placed in the middle of Purdue's Clapping Circle during the Boiler Cold Rush (BCR, SP2022) and/or Boiler Gold Rush (BGR, FA2022). During the cold winder months, stepping outside is, on most occasions a painful experience due to the strong winds, rain or snow. In contrast, the coming out of summer conjures images of night campfires and bonfires. A Warm Light for All will be a single large cylindrical lamp structure extending from the ground skywards with a black lower base encasing electronics and the light source within. The light source will be comprised either of strip RGB LEDs through the center of the tube, a flood light in the bottom casing or a combination of both. Light emanating from the lamp will be diffused through the cylinder's surface which will be patterned with laser cut curves allowing the cylindrical structure to be formed. It will measure roughly 2m (6.5ft) in height and 0.5m (20in) in diameter. With the electronics and controls within the base, the structure will be bottom heavy weighing it to the ground and weatherproofed with silicone caulk and sealant to ensure water tightness.

Without any interaction, the light emanating from the structure will be characterized by a warm, slow pulsing light Figure 1. As audiences interact with the installation, the light will gradually become warmer and brighter towards the top proportionate to the number of people surrounding or walking by it (Figure 2 and Figure 3). Sensors will be used to determine the proximity/activity with audiences and the glow will be provided with a breathing algorithm programmed into a controller that is subtle enough not to be immediately noticeable, but significant enough to be acknowledge upon inspection. Power for the lamp will have to be provided by an external source and wiring will be secured to the ground for safety.

A Warm Light for All will be a unique night light installation standing amongst the notable lit landmarks such as the Engineering Fountain and the clock tower. Unlike those landmarks, it will stand as an interactive installation encouraging interaction and symbolizing the energy and anticipation that await incoming and current students of the new academic year, a light of hope and infinite possibilities. The use of lighting in and out of buildings has been shown to be a key factor impacting mood and performance among other things. Using this lamp, and its position in the clapping circle encompassed by its low walls and mounds, this installation aims to create a metaphysical haven in the hopes of lifting people's spirits during a dreary period of the year (BCR) or evoke emotions associated with gathering around a fireplace (BGR). The greater the gathering, the light will be stoked, transforming a flame into a bonfire.

Principal Contact:

Wan Kyn Chan Graduate Research Assistant, Mechanical Engineering chan160@purdue.edu

Alternative Contact:

Fabian Winkler
Professor, Rueff School of Design, Art, and Performance Faculty
fwinkler@purdue.edu

Artist Impression (Image may not be an accurate representation of actual structure. Season will be later winter/early spring):

Figure 1 – Light monolith without interaction (no viewers within proximity of the installation)

Figure 2 – Light monolith with interaction with some people. Light emanating from the monolith will be warmer and glow brighter.

 $Figure \ 3-Brightest\ occurrence\ of\ the\ monolith\ with\ light\ shining\ warmest\ with\ most\ significant\ breathing\ glow.$

Estimated Budget breakdown:

Material	Description	Unit Price	Quantity	Total
Clear Acrylic	Acrylic/Polycarbonate	\$250 (Menards,	4	\$1000
Sheet/ Plywood	sheets or Plywood,	Home Depot,		
Sheets	estimated to be 4ft by	McMaster)		
	8ft, for laser cutting to			
	be bend into the form			
	of a cylinder. Laser			
	cutting will be			
	performed either in			
	BIDC, AD or ADM			
	(opposite Purdue			
	surplus). Wood will			
	be also used for			
	construction of base			
	and control housing.			
Wooded Dowels	Large wooden dowels	\$50 (Menards,	2	\$100
	for the adhesion of the	Home Depot,		
	lights enabling the	McMaster)		
	360° distribution of			
	light through the			
	cylindrical structure.			
Arduino, sensors	Microcontroller for	\$250 (directly	1	\$250
	programming lights	from Arduino,		
	and sensors	Digi-key, etc.)	_	
Addressable RGB	Individually	\$100 (Amazon,	5	\$500
LED	addressable LED	Digi-key,		
	lights (in strips) that	external		
	allow control from	contractors)		
	one end to the other.			
	Sponsors for lighting			
) (C) 11	also welcomed.	Φ500	1	Φ500
Miscellaneous	Tooling and materials	\$500	1	\$500
Tooling	including but not limited to:			
	• Sandpaper			
	• Adhesives			
	• Batteries			
	Silicone Caulk			
	Heat Shrinkable			
	Plastic			
	 Wiring 			
	 Nuts and bolts 			
Man hours	Single individual	\$12	50 hours	\$600
	manufacturing the			
	structure at \$12/hr			
			Total	\$2950